Skip to main content

Posts

Showing posts from December, 2016

Featured Post

Opencv tutorial RTMP video streaming to NGINX restream as HLS

Video streaming Tutorial of sending processed Opencv video to NGINX and distributing video from NGINX (broadcast) by HLS stream for a wider audience, like multiple web players, VLC, or any other video stream receiver. Opencv application HLS streaming by GStreamer and NGINX  We will use GStreamer to send video from the Opencv application by rtmp2sink to an RTMP module in NGINX. In our example, the server is a widely used NGINX server with an Nginx-RTMP-module. The NGINX will receive RTMP video from Opencv and restream as an HLS video stream considered for multiple end consumers. This is a follow-up to the previous article about Video streaming from Opencv to RtspSimpleServer by rtsp protocol.   The goal is the same. Send video from Opencv to the server and restream the video for a wider audience. The difference is that RtspSimpleServer running on windows, NGINX is running in docker (WSL2). The one-to-one communication between Opencv and RtspSimpleServer was established by RTSP protocol

Opencv head and people detection code cascade

 head and people detection Opencv LBP CascadeClassifier  This LBP cascade for opencv will be available soon. People is just new version of the old one published here. Head detection is new one. Just trained. LBP cascade description I trained cascade just on hopefully well selected 2000 positive images and 2400 negative. Great effect has also selection of the negative samples. I need to find more about this. Same positive samples and different negative set of samples should lead to big different kind cascade property. Yes positive samples is good to have somehow unique (situation, positive, background, rotation etc). The negative samples are simple to capture. Random crop from the several pictures from vacation. Nothing special. But there is also the magic behind. Instead of try different kind of positive samples. Try the negative. Easy to collect and performance of the cascade should be rapidly different. Also, It is not necessary to have 100 percent clear negative samp

Car detection in Opencv LBP cascade to download

LBP cascade for Car detection in Opencv LBP ( included to download) and Haar features in OpenCV detectMultiscale are one of the most simple and also powerful (Old sure) to detect something. In this article is a pre-trained LBP cascade for car detection. Code and basic info. The results are not that bad. Check the video and enjoy a pre-trained cascade. Opencv cascade for car detection conditions of use Also, Do not worry about the condition of use. Use only on your own risk. That's it. The dataset to train this cascade is only mine. I also colect positive and negative data. I just want to say, that there is also no conditions based on the datasets. There is no others conditions of use. Maybe check the Opencv traincascade utility. Thanks. Yes share and cite. Just small minimal condition. Download HERE LBP cascade properties for car detection <!-- This is just basic 5 stage haar cascade car detector develop by  V.K. from https://funvision.blogspot.com -->

Facebook page is out as Funvisionblog

Facebook page is out. Stay tuned to more tutorials, news and updates. Funvision

Opencv rectangle drawing tutorial C++

Opencv rectangle drawing tutorial C++ Opencv rectangle drawing tutorial by example in C++. Simple steps let you draw the rectangle inside the pictures and video sample. Several rectangle definitions and rectangle drawing function just show you a various ways to draw the rectangles inside the picture and video. It is simple and easy.  Steps in descriptions rectangle drawing  All the steps below the picture (A B ... F) are also marked inside the code. The commends inside c++ code // just describe the Rect definition to define rectangle to draw inside the function rectangle. This function just draws the defined rectangle inside the  Picture.   Rectangle(Picture is the first parameter. This is just Mat where to put the second parameter. Defined Rect (rectangle). You can choose to put the rectangle to that function in a several ways. This is not 2 much important. They just do the same job for you.. I am using just one of them.  Try to figure out the steps and compare the

opencv traincascade haar and lbp my training parameters

Opencv traincascade haar and lbp training  Opencv traincascade script parameter examples for windows. Traincascade utility is easy to use for training HAAR like and LBP like cascade for opencv detect multiscale by CascadeClassifier. On this blog you can find several example how to detect something by the HAAR a nd LBP cascade.. Opencv traincascade examples I am using this parameters. You can start where you just ended before. This make sense. Train for 5 stages and test. If the results with higher treshold make sense. Train again with same script and increase numStages. After some time training is much and much slower and test before you run the training for the long time.  This is my scripts.. If you have any opencv_traincascade.exe -data v -vec vec.vec -bg bg.dat -numPos 300 -numNeg 300 -numStages 10  -numThreads 2 -stageType BOOST -featureType LBP -w 32 -h 64 -minHitRate 0.995 -maxFalseAlarmRate 0.42 -maxDepth 1 -maxWeakCount 100 opencv_traincascade.exe -dat

My Opencv LBP cascade for people detection for download

13 stage opencv LBP cascade for people detection to download My Opencv LBP 13 stage cascade for people detection. It is only 13 stages learned on 300 of positive people images. It is not trained enough. Training time is only under 1 hour. I have also a more trained version also on 300 people. They are just under testing. This is just what i want to release to public. Enjoy The cascade. It is not that bad. You need to only set the higher minNeighbors parameter. As I sayd it is not trained a lot. Opencv cascade for people detection conditions of use Also, Do not worry about the condition of use. Use only on your own risk. That's it. The dataset to train this cascade is only mine. I also colect positive and negative data. I just want to say, that there is also no conditions based on the datasets. There is no others conditions of use. Cascade classifier LBP great but real value is in Datasets This cascade is just example achieved in 2 hours. One hour of trai

Popular

Opencv GStreamer (windows) video streaming tutorial + full source code for RTSP HLS streaming

Opencv C++ simple tutorial to use GStreamer to send video to Server that converts RTSP to HLS video stream. The source code and all needed configurations are included.  O pencv is a powerful computer vision library. You can use it in production and use it for image and video processing and modern machine learning. In some applications, You may want to stream your processed video results from your C++ OpenCV app outside and not just use a simple OpenCV graphical interface. The video streaming of your results is what you are looking for. Do you want to stream processed video from your IoT device? Yes, This is mainly for Linux. Do you want to stream processed video to the Web player, broadcast the video or just use VLC to play video processed by OpenCV? You may be interested in reading the next lines.  Opencv video stream to VLC or WEB There are basically two main options with OpenCV. The first one is to write a streaming application using FFMPEG. This is a little bit more advanced appro

Compile Opencv with GStreamer for Visual Studio 2019 on windows 10 with and contribution modules

The goal of this tutorial is a simple step by step compilation of Opencv 4.2 with contribution extra modules with GStreamer as a bonus. The environment is Windows 10, Visual Studio 2019 C++ application. This took me almost one day of correcting of CMake setting. The goal of this tutorial is: compiled a set of OpenCV libraries with GStreamer and FFmpeg on Windows. I focus mainly on GStreamer. It is a little bit more tricky. You will reach the following information about your Opencv environment by compile and run this simple code. The Opencv GStreamer is turned as YES. GStreamer gives you a great opportunity to stream OpenCV output video outside of your program, for example, web application. I recently compiled with opencv 4.4. The update at the end of the post.  It is working!! wow, The working app and configuration in future tutorials. #include   <opencv2/opencv.hpp> #include   <iostream> using namespace cv; int   main () {      std ::cout <<  &q

Opencv Web camera and Video streams in Windows subsystem for Linux WSL, by FFmpeg and GStreamer

Opencv in Windows Subsystem for Linux (WSL) is a compatibility layer designed to running Linux binary executables (in ELF format) natively on Windows 10. I love it. There are some limitations to mention. The first biggest is the lack of support of CUDA, which could be a limitation for deep learning application and learning in WSL. The second trouble for Opencv development is the lack of Web camera support. This suspends WSL almost on a useless level for me until now.  VideoCapture cap;   is not working in WSL for now cap.open(0);  FFMPEG to WSL opencv program and back to WEB browser in windows This Video capture is right now not possible at in Ubuntu running under Windows (WSL). I will hit this limitation in this article. I will show you how to reach a video camera and learn something more about video streaming. Yes, the opencv processed frames will be stream to the web player on simple web site. Check the goal of this opencv tutorial on this video What you will learn

Opencv HSL video stream to web

This tutorial will show you all components, configuration, and code needed to steam video output results from Opencv C++ to your Web player. The C++ program will take any video input and process this video. The processed video will be stream outside of OpenCV using the GStreamer pipeline (Windows part). The HLS video produces one Playlist file and several MPEG-TS segments of videos. This several HLS outputs are stored in the Windows file system. I am using WSL 2, windows subsystem for Linux to run Ubuntu distribution. Here the NGINX is installed with the RTMP module. NGINX is distributing a video stream from the windows file system to the web.  Let's have a look at this in more detail.  What is covered? Opencv C++ part + GStreamer pipeline NGINX configuration Architecture Web Player for your HLS stream What is not covered? Detailed instalation of Opencv + Gstreamer more here  GStreamer installation  ,  GStreamer Installation 2  on windows Detailed installation of NGINX + RTMP modul

Opencv C++ Tutorial Mat resize

Opencv Mat Resize   Resize the Mat or Image in the Opencv C++ tutorial. It is obviously simple task and important to learn. This tutorial is visualized step by step and well-described each of them. The main trick is in that simple code. Mat Input; Mat Resized; int ColumnOfNewImage = 60; int RowsOfNewImage = 60; resize(Input, Resized, Size( ColumnOfNewImage , RowsOfNewImage )); This code just takes an Input image and resized save to output Mat. How big is the resized image is based on the Size? Size just contains two parameters. Simple numbers of how the result should be big. The simple number of columns (width) and rows (height). That is basically it. Enjoy                                                 Boring same face again and again.  Load Image, resize and save Opencv C++ #include <Windows.h> #include "opencv2\highgui.hpp" #include "opencv2\imgproc.hpp" #include "opencv2\video\background_segm.hpp" #include &qu

Opencv tutorial RTMP video streaming to NGINX restream as HLS

Video streaming Tutorial of sending processed Opencv video to NGINX and distributing video from NGINX (broadcast) by HLS stream for a wider audience, like multiple web players, VLC, or any other video stream receiver. Opencv application HLS streaming by GStreamer and NGINX  We will use GStreamer to send video from the Opencv application by rtmp2sink to an RTMP module in NGINX. In our example, the server is a widely used NGINX server with an Nginx-RTMP-module. The NGINX will receive RTMP video from Opencv and restream as an HLS video stream considered for multiple end consumers. This is a follow-up to the previous article about Video streaming from Opencv to RtspSimpleServer by rtsp protocol.   The goal is the same. Send video from Opencv to the server and restream the video for a wider audience. The difference is that RtspSimpleServer running on windows, NGINX is running in docker (WSL2). The one-to-one communication between Opencv and RtspSimpleServer was established by RTSP protocol

Opencv C++ tutorial : Smoothing, blur, noise reduction / canceling

Smooth or blur, gaussian blur, and noise-canceling, This tutorial will learn OpenCV blur, GaussianBlur, median blur functions in C++. Additionally, the advanced technique for noise reduction  fastNlMeansDenoising family  will be introduced with a code example for each method.   You can use blurring of the image to hide identity or reduce the noise of the image.  Blur can be a very useful operation and it is a very common operation as well. For example, the anonymization of pedestrians, face or is one possible target for blue operation. The blur is the most common task to perform over the image to reduce noise. The noise reduction is more task for Gaussian blur than for simple blur operation. The various blur operations are very common for image processing on mobile devices.  The more important is the robustness issues of the data in pre-processing for machine learning. Sometimes, by blurring the images of the dataset can have a positive effect on the robustness of the achieved de

OpenCV 4.5 simple optical flow GPU tutorial cuda::FarnebackOpticalFlow

This OpenCV tutorial is a very simple code example of GPU Cuda optical flow in OpenCV written in c++. The configuration of the project, code, and explanation are included for farneback Optical Flow method. Farneback algorithm is a dense method that is used to process all the pixels in the given image. The dense methods are slower but more accurate as all the pixels of the image are processed. In the following example, I am displaying just a few pixes based on a grid. I am not displaying all the pixes. In the opposite to dense method the sparse method like Lucas Kanade using just a selected subset of pixels. They are faster. Both methods have specific applications. Lucas-Kanade is widely used in tracking. The farneback can be used for the analysis of more complex movement in image scene and furder segmentation based on these changes. As dense methods are slightly slower, the GPU and Cuda implementation can lead to great performance improvements to calculate optical flow for all pixels o

Opencv VideoCapture File, Web Camera, RTSP stream

Opencv VideoCapture File, Camera and stream Opencv tutorial simple code in C++ to capture video from File, Ip camera stream and also the web camera plug into the computer. The key is to have installed the FFMPEG especially in case of reading the stream of IP cameras. In windows just use Opencv Installation by Nugets packages  Here . Simple easy under 2 minutes of installation. In Linux, you need to follow the instruction below. If you are on Debian Like package system. Under Fedora Red hat dist just use a different approach. Code is simple and installation is the key..  Windows use nugets packages Linux you have to install and build Opencv With FFMPEG. Also simple.  It is easy to capture video in OpenCV Video capture  in OpenCV is a really easy task, but for a little bit experienced user.  What is the problem? The problem is the installation of Opencv without recommended dependencies. Just install all basic libs that are recommended on the website. # Basic packa

Opencv 4 C++ Tutorial simple Background Subtraction

This method is used to learn what belongs to the background of the image and what belongs to the foreground. The static cameras that monitor the area can very easily recognize, what is part of the image that is always here or there is something that is new and moving over the background.  Background subtraction Visual studio 2019 project setup If you have Opencv 4+ compiled or installed only steps you need to do is set the include directory with OpenCV header files. Set the Additional library Directories that point to \lib folder. Just note that Visual Studio 2019 should use VC16 \lib. Finally, As additional dependencies, specify the libs used to resolve the function implementation in the code. The list for Opencv 420 is here. The different version of opencv is using different numbering for example opencv 440 will use opencv_core440.lib.  opencv_bgsegm420.lib opencv_core420.lib opencv_videoio420.lib opencv_imgproc420.lib opencv_highgui420.lib opencv_video420.lib  Background sustract